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Abstract
Buildings and the atmosphere are intrinsically connected via cooling and heating systems. Global
climate is projected to growwarmer, with an increasing fraction of the population living in urban
centers. This introduces the challenge for new approaches to project future energy demand changes in
cities. InNewYorkCity (NYC), the focus of our study, while air conditioning only accounts for 9%of
all building energy end use, it is themain driver of annual peak electric demand.Here, we present end
of century building cooling electric demand projections forNYCusing a high resolution (1 km)
configuration of theWeather Research and Forecastingmodel coupled to a building energymodel and
forced by bias-correctedCESM1 global simulations. High resolution urban canopy parameters such
as building height and plant area fraction derived from a public tax-lot level dataset are used as input to
the urban physics parameterization. Cooling demand increases in RCP4.5 ranged between 1%and
20%across all days, with largest increases on days below 50th percentile demand. Results show that
end of century building cooling demand on days below the 50th percentilemay be up to 80%higher
than the 2006–2010 period in the RCP8.5 scenario. The largest percent increases per unit areawere
found over less densely populated boroughs of Brooklyn,Queens, and Staten Island.Maximum
summer cooling demand for the entire city is projected to increase between 5%and 27% for RCP4.5
andRCP8.5, respectively. Overall, analysis shows a close to 8% increase in cooling demand per 1 °C
increase in temperature.

Introduction

Energy demand for building air conditioning is a
considerable fraction of electric demand in the US.
With temperatures in the Northeast US projected
to increase throughout the 21st century (Hayhoe
et al 2008), building energy demand and consumption
are slated to also increase (Sailor 2001, Amato
et al 2005). In New York City (NYC), summer air
conditioning accounts for only 9% of annual energy
consumption, yet it is the main driver of annual peak
electric demand (NYISO 2017). Moreover, the New
York Independent System Operator (NYISO) expects
peak demand increases to outpace energy consump-
tion change due to the larger need for space cooling
under warming weather conditions. Additionally,
cities are often warmer than their surrounding rural

areas, a phenomenon called the Urban Heat Island
(UHI), which may lead to larger cooling loads (Hsieh
et al 2007, Santamouris 2014, Santamouris et al 2018).
These UHI impacts on local temperatures have been
shown to increase during extreme heat events
(Li and Bou-Zeid 2013, Ramamurthy et al 2017, Ortiz
et al 2018) due to positive feedbacks related to
anthropogenic heat release and reduced urban soil
evaporation.

Many studies of climate impacts on cities’ energy
demand have focused on statistical or physical process
based methods to quantify building or total energy
demand. In NYC, Howard et al (2012) modeled
annual energy end-use by tax-lot with amultiple linear
regression model, using building floor area and build-
ing function as the main predictors. Others have used
neural networks to perform short term (24 h) forecasts
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at the utility-scale, obtaining errors of <5% in pre-
dicted peak loads (Park et al 1991). Beccali et al (2004)
used an unsupervised neural network trained on mul-
tiple climatic variables to model suburban energy
loads in Italy. Olivo et al (2017) quantifiedNYC energy
consumption with a single building energy model
(SBEM) applied to the city’s entire building
stock forced by weather data from the Typical
Meteorological Year database. Ahmed et al (2017) fol-
lowed a similar approach for Manhattan in NYC, for-
cing SBEM simulations with an actual weather
forecast. They studied end-use energy demand and
consumption based on 51 building archetypes for a
single heat wave event.

A common approach involves using climate-
derived indices such as cooling degree days (CDD) to
relate climate impacts on cooling demand. This
method has been used for Switzerland (Christenson
et al 2006) to find potential increases in CDD between
13% and 17% across a multi-model ensemble.
Cooling loads in tropical areas were derived from a
multi-model ensemble (Angeles et al 2017) in low to
medium emissions scenarios, finding mean total
increases of over 8 GW for the Caribbean region.
Lebassi et al (2010) used historical records to study
CDD, demand, and consumption in California, find-
ing large sensitivity to regional scale phenomena (e.g.,
increased sea-breeze impacting demand near the
coast). Mukherjee and Nateghi (2017) found that
mean dew point temperature was a better predictor of
cooling and heating loads than CDD, with other cli-
matic variables like wind speed and precipitation play-
ing an important role.

A third method involves numerical weather pre-
diction coupled with urban canopy models to study
spatial-temporal variation of urban climate and cool-
ing loads. This method has the advantage of account-
ing for feedbacks in the atmosphere-building envelope
system, which might not be quantified with other
techniques. In Japan, urban climate projections cou-
pling the Weather Research and Forecasting (WRF)
model to a single-layer urban canopy model across a
multi-model ensemble (Kusaka et al 2012) found that
heat stress hours were projected to increase by 62% by
the 2070s. The single-layer urban canopy model was
used to study cool roofs as a climate mitigation tech-
nology (Vahmani et al 2016) across RCP2.6 and
RCP8.5 scenarios. This study found that cool roofs
could offset city-scale climate-related temperature
changes by up to 1 °C. Tewari et al (2017) studied
combined impacts on cooling demand from climate
change and urban expansion in the Phoenix and Tuc-
son metropolitan areas using the WRFmodel coupled
with a multi-layer urban canopy—building effect
parameterization, (or BEP) and building energy mod-
els (BEM). They found that cooling demand per unit
area may increase by up to 42.6% under the highest
emissions scenario. Bueno et al (2011) coupled an

SBEM to the town energy balance urban canopy
model to quantify these impacts in Toulouse, France.

Quantification of energy demands at city scales has
either focused on the use of statistical (Park et al 1991,
Beccali et al 2004, Howard et al 2012) or process based
(Ahmed et al 2017, Olivo et al 2017) models. One
inherent limitation in these approaches is the lack of
atmosphere-building envelope feedbacks that may
take increased roles under a warming climate. An
approach to resolve these impacts involves coupling
numerical weather prediction to BEM (Bueno et al
2011, Kusaka et al 2012, Vahmani et al 2016, Tewari
et al 2017). However, possibly due to computational
cost and lack of detailed urban morphology data,
studies have been limited to short time periods
(<1 summer). Here, we present a study of end of cen-
tury climate change impacts on summer cooling
demand for NYC, using the WRFmodel coupled with
a modified BEM across two emissions scenarios for a
multi-year period.

Methods

Simulation setup
This study uses a high resolution configuration of the
WRF model (Skamarock et al 2008) coupled with a
modified multi-layer urban canopy and BEM para-
meterization as a tool to study changes in building
cooling demand under climate change conditions.
Regional-to-local scale projections are developed
using bias-corrected runs of the Community Earth
SystemModel version 1 (CESM1) (Brúyere et al 2015)
dataset as initial and boundary conditions. Their work
adjusts GCM by splitting data output into a seasonal
signal and 6-hourly varying perturbation term repre-
senting the climate signal. The GCM’s seasonally
varying climatological signal is then substituted by its
counterpart from ERA-Interim reanalysis between
1975 and 1994:

CESM Obs CESM .BC = + ¢

Here, CESMBC is the bias corrected CESM1, Obs is
the reanalysis climatological mean, and CESM′ is the
CESM1 6-hourly perturbation term. Bias-correction
of Global Circulation Models (GCMs) was shown to
improve results of regional modeling forced with glo-
bal models (Bruyère et al 2014). Sea surface tempera-
tures from bias corrected CESM are updated daily.
Specifically, temperatures over the continental US
showed a decreased cold bias when all boundary con-
dition variables were corrected with reanalysis data.
Model physics used in this work follow the work of
Gutiérrez et al (2015b) and Ortiz et al (2018) and are
detailed in table 1. As the study concerns summer peak
energy demand by end of century, only summers
(1 June–31 August)weremodeled, with a spin-up per-
iod of 3 days. Simulations are conducted for a histor-
ical (2006–2010) and end of century (2095–2099)
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periods. The domain extent (D01, figure 1) at a grid
spacing of 9 km (119 points by 119 points) covers the
Northeast Unites states and adjacent portions of the
Atlantic Ocean. Domain resolution was increased via
two-way nesting to 1 km (81 points by 84 points) hor-
izontal grid spacing over the New York Metropolitan
Area (D03, figure 1), with an intermediate 3 km (120
points by 120 points) resolution domain (D02,
figure 1). The cumulus parameterization was turned
off for the 1 km domain, as WRF can resolve con-
vective processes explicitly at this resolution. There are
50 vertical levels, with 35 of thembelow 2 kmheight.

Urban canopy parameters are an important comp-
onent in urban canopy models like BEP, providing
urban morphology data necessary to compute energy
and momentum exchanges with the atmosphere. Tra-
ditionally, these parameters have been estimated for
different urban land use categories via use of look-up
tables. Recent developments include disaggregation of
urban land use classes from the commonly used
3-category classification (low/high density residential
and commercial) to more a varied and descriptive
scheme based on satellite imagery and a supervised
classification algorithm, as in the WUDAPT project
(Brousse et al 2016). A more costly approach involves
measurements (often from aerial imagery) of urban
canopy parameters at city-scales, as employed by
NUDAPT (Ching et al 2009) for most major US cities.
This work follows Gutiérrez et al (2015c), which
employs a combination of tax-lot data with the exist-
ing NUDAPT database. High resolution urban canopy
parameters, including building plant area fraction,
height, surface to plant area ratio, and urban land use
were derived from the NYC property land use tax-lot
output (PLUTO), made available by the NYC Depart-
ment of City Planning. PLUTO compiles building
information at the tax-lot level, including floor area,
number of floors, and facade width. Building para-
meters were interpolated into the D03 grid at 1 km
spacing. PLUTO only provides information within
NYC limits, so urban canopy parameters for grid
points outside city limits were taken from NUDAPT.

Figure 2 shows the 1 km resolution building area frac-
tion and building height. PLUTO-derived parameters
capture densely packed buildings in NYC, as well as
the spatial heterogeneity of building heights, with
expectedmaxima over downtown andmidtownMN.

We consider two projection cases based on the
representative concentration pathways (RCPs) (van
Vuuren et al 2011): a stabilization scenario (RCP4.5)
and a ‘business as usual’ scenario (RCP8.5). The
RCP4.5 scenario projects increasing radiative forcing
which stabilizes at 4.5 Wm−2 by 2100, while RCP8.5
projects rising radiative forcing, reaching 8.5Wm−2

by end of century. Urban canopy parameters and land
use classification in the projections are unchanged
from the historical period.

Model evaluation
Model output is evaluated at the city-scale using load
data from the NYISO. NYISO archives electric load at
5 min intervals for each of its load zones. NYISO
divides New York State into 11 zones, with Load Zone
J spanning the entirety of NYC. Load records can be
found as far back as May 2001. Since NYISO only
records the city’s bulk load, and WRF only models
building energy related to cooling and heating loads, a
baseline load was computed based on Salamanca et al
(2013). Baseline loads are calculated from the average
of the day with minimum total load and the day with
the lowest intra-day variability. For NYC, this typically
occurs during May, when historical mean maximum
temperature ranges between 19.4 °C and 23.8 °C
(67–75 °F). This method has been used to successfully
forecast total short-term (0–24 h) city-scale peak
demand in NYC (Ortiz et al 2016). Simulated daily
maximum temperatures and wind speeds are evalu-
ated with station observations from four airports
surrounding NYC (figure 1, right panel). For wind
speeds, airport stations report any value<1.5 m s−1

as calm conditions, so data points below this threshold
in both WRF and CESM1 datasets are not considered.
As peak demands occur onwork days, all weekend and
local holidayswere removed from the dataset.

Results

Electric load andnear-surface climatic variable
evaluation
Historical period simulations are evaluated against
both bulk city-scale daily peak load data from the
NYISO and airport station temperature observations
(figure 3). Simulated results are compared against
kernel density estimates (KDE), an approximation of a
dataset’s distribution. One advantage of KDE is that
they do not require bins to group data samples.
Results show WRF total mean daily peak demand of
9220.8 MW (figure 3(a)), overestimating mean daily
peak demand from NYISO of 8962MW, or by 2%.
Model standard deviation (429MW), however,

Table 1.Model physics parameterizations used inWRF simulations.

Model physics Parameterization

Land surfacemodel NOAHLSM (Tewari et al 2004)
Cumulus Kain–Fritsch (Kain 2004), off inD03
Microphysics WSM6 (Hong and Lim2006)
Urban canopy Building effect parameterization (BEP)

(Martilli et al 2002)
Building energymodel (BEM) (Salamanca

et al 2010)
Cooling tower parameterization (Gutiérrez

et al 2015a)
Variable urban drag coeff. (Gutiérrez

et al 2015c)
Shortwave radiation Dudhia (1989)
Longwave radiation RRTM (Mlawer et al 1997)
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underestimates observations’ value (1070.2 MW)
by 59%. NYISO recorded a maximum load of
11 305.5 MW, while the WRF maximum was
9569.6 MW, an underestimation of about 15%.Model
performance is partly explained by lack of inclusion of
non-building loads such as the NYC subway system
and street lighting, which a constant baseline may
not account for. For example, NYC Transit,
including buildings and subway infrastructure,
averages 200MW electric load, growing to 350MW
during peak hours, with an additional 96MW added
from newly constructed subway lines (Metropolitan
Transit Authority 2003). Other potential causes are

failure to accurately capture building occupancy in
simulations, which are assigned a simplified daily
schedule in BEM for each urban class.

Model evaluation against weather station data
shows that WRF simulated daily maximum temper-
ature improves on the input CESM1 data in both
model mean and standard deviation (figure 3(b)). Air-
port stations reported a mean daily maximum of
28.41 °C with a standard deviation of 3.69 °C. WRF
simulations results, interpolated using nearest neigh-
bor showed a mean daily maximum of 28.66 °C
(0.88% error)with a 3.37 °C standard deviation (9.5%
error), whereas BC-CESM1 showed a 26.54 °C mean

Figure 1.WRF simulation domains (left) and PLUTO-derived land use index insideD03. The boroughs ofNYC are denoted shown:
Brooklyn (BK), The Bronx (BX),Manhattan (MN), Queens (QN), and Staten Island (SI), as well as New Jersey (NJ) across theHudson
River.

Figure 2.Building plant area fraction (a) and building height (b) parameters used in all simulations. Data is aggregated at 1 kmgrid
spacing.
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(6.6% error) and 2.87 °C standard deviation (14.8%
error). These results are consistent with Bruyère et al
(2014), which found reduced cold biases in near sur-
face temperature distributions when forcing WRF
with bias-corrected climate data. Winds are, in gen-
eral, underestimated in the WRF simulations for
values below 5m s−1, by nearly 0.5 m s−1, while over-
estimating occurrence of winds over 6.5 m s−1. While
BC-CESM1 follows the shape of the observations’ dis-
tribution, it does not capture high wind values
(>10 m s−1), at all whereas WRF simulations reach
values of 18 m s−1, where observations report a max-
imumof 21.9 m s−1.

Cooling load projections
Peak cooling demand projections are presented as
percent (%) increases over 2006–2010 across different
points in the distribution of cooling demand (figure 4).
In RCP4.5 (figure 4(a)), cooling demand increase
ranges from 1% to 20% across all values. Throughout
the city, percent increases are larger in BK, QN,
and SI. Manhattan, dominated by taller, more densely
packed buildings, accounts for the highest absolute
2006–2010 cooling load per unit area (table 2), leading
to lower percent increases. Cooling demand increases
are highest, in general, at the 25th percentile, over QN
and SI, reaching up to 18%. Demand increases are
lower overall on days above 75th and 90th percentiles
demand (figure 4, third and fourth panels), which
average 11.13% and 10.73%, respectively, over the
historical period, whereas the 25th and 50th average
9.1% and 8.9%, respectively. Maximum summer peak
demand is an important metric for utilities, as it is
indispensable for planning of generation and trans-
mission resources. Maximum peak cooling demand
for the projection period was 3016.7 MW, represent-
ing an increase of 5.4% over the simulated 2006–2010
value.

In RCP8.5 (figure 4(b)), cooling demand increases
aremuch larger than RCP4.5, reaching past 80% com-
pared to 2006–2010. The largest changes are observed
at the 25th (38% increase) and 50th (35% increase)

percentiles, a reversal of the trend observed in RCP4.5.
On the warmest days (figure 4(b), 90th percentile),
percentage increases are not as large due to large his-
torical period cooling demand, under 25% over MN
and 35% over BK and QN. Increases are largest over
relatively suburban SI, between 35% and 45%. Similar
to RCP4.5, the largest cooling load anomaly occurs in
the cooler half of all summer days, when percent chan-
ges reach up to 80%. Similarly to RCP4.5 projections,
largest increases occur over BK, QN, and SI, and grow-
ing lower with distance to the southeastern shore. This
scenario produces a significantly larger maximum
total cooling demand of 3644.4 MW, a 27.3% increase
over the historical period.

Temperature and cooling load
Simulated peak demand increases per NYC borough
as summarized table 2 show spatial heterogeneity. This
is due both to the geographical heterogeneity of the
urban canopy across the city (figure 2) as well as spatial
variability in climate projections. Larger baseline
loads in the 2006–2010 period in areas with taller
buildings (e.g., Manhattan), experience larger unit
load increases, but lower percent increases in end of
century scenarios. Although building stock character-
istics are kept constant in all simulations, temperature
changes are not. Defining a historical climatology for
each grid point as the mean 16:00 LST temperature
and cooling demand (T2hist andAChist), end of century
anomalies were computed as

T T T

AC AC AC AC

2 2 2 ,

100 .

anomaly 16lst,2095 2099 hist

anomaly 16lst,2095 2099 hist hist*

= -

= -( )
–

–

Here, T216lst,2095–2099 and AC16lst,2095–2099 repre-
sents temperatures and cooling loads at 16:00 LST for
every grid point in D03. Results show a strong
(figures 5(a) and (b)), almost linear relationship
between T2anomaly and ACanomaly in both RCP4.5 and
RCP8.5. For 4.5, a linear regression shows an increase
of 8.1% cooling demand per 1 °C increase in temper-
ature with a coefficient of determination (R2) of
0.89, and p-value<.001. For RCP8.5, a similar rela-
tionship was found, with an increase of 7.7% cooling

Figure 3.Kernel density estimates of (a) daily peak load, (b) 2 m temperature, and (c) 10 mwind speed for the historical simulation
period fromobservations andWRF simulations.Meteorological variables also include bias corrected CESM1 (BC-CESM1) used as
initial and boundary conditions.
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demand per °C increase in temperature, coefficient of
determination (R2) of 0.86, and p-value<.001.
RCP8.5 results show more spread, with a standard
error in the regression of 19.74× 10−4, whereas
regression for RCP4.5 has a value of 21.82, a 10.5%
difference. RCP8.5 exhibiting more spread suggests a
more variable climate, whichmay lead to challenges in
building demand prediction andmanagement.

Other possible predictors of cooling demand
changemay include ameasure of airmoisture content,

an important component in air conditioning systems.
One such estimator is the heat index (Rothfusz 1990),
which combines relative humidity and temperature to
measure temperature experienced by humans in sha-
ded areas. AC demand increases anomaly was com-
pared to simulated heat index anomaly (figures 5(c)
and (d)). Results indicate that although a strong corre-
lation exists with heat index, with coefficients of deter-
mination of 0.83 and 0.79 for RCP4.5 and RCP8.5,
respectively, it is not as good an estimator of ACanomaly

Figure 4.Peak air conditioning demand increase from2006 to 2010 for 2095 to 2099 under (a)RCP4.5 and (b)RCP8.5.

Table 2.Median building peak AC energy demand per building unit area (W m−2)
for the historical and two projection scenarios (2095–2099). Values in parenthesis
showpercent increase over historical period. BHGT indicatesmean building height
in each borough.

2006–2010 RCP4.5 RCP8.5 BHGT

Bronx 57.3 62.8 (9.9%) 75.0 (31.7%) 16.0

Brooklyn 42.9 46.8 (9.4%) 56.15 (31.2%) 13.8

Manhattan 81.1 86.5.5 (6.8%) 102.1 (26.4%) 47.7

Queens 42.9 47.3 (10.5%) 57.9 (35.5%) 11.0

Staten Island 42.11 46.9 (14.4%) 58.3 (41.9%) 9.2
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as 2 m air temperature. Additionally, ACanomaly is less
sensitive to changes in heat index, showing increases of
6.5% and 5.8% per 1 °C in heat index for RCP4.5 and
RCP8.5, respectively.

Conclusions and futurework

In this study, a high resolution urbanized configura-
tion of the WRF model was used to project building
cooling demand for the city of New York by end of
century. Two scenarios were explored, RCP4.5 and
RCP8.5, representing stabilization and high emissions
scenarios, respectively. As seen in the results section,
changes in daily peak cooling demand shows strong
geospatial heterogeneity across NYC. In general, loca-
tions closer to the southern coast (BK, QN, SI) show
largest variability across cool and warm days. Largest
increases are observed in days below the 50th percen-
tile of cooling demand, more evident in the high
emissions scenario, suggesting a decrease of cool
summer days. Meanwhile, end of century summer
maximum demand for cooling could increase by 5%
in RCP4.5, and around 27% in RCP8.5 on average.

Percent increases per unit area were found to be more
sensitive to changes in temperature rather than heat
index, with sensitivity ranging between 7.7% and 8.1%
ACdemand increase per 1 °Cdailymaximum temper-
ature increase. This sensitivity is particularly impor-
tant, as simulated maximum temperature anomaly
could reach over 15 °C, leading to more than a
doubling in peak demand on particular days.

One limitation of this impact study is the assump-
tion that 100% of indoor spaces are cooled. This limit-
ing assumption is due both to lack of information on
air conditioning system adoption at the city scale as
well as current technical limitations of the BEM para-
meterization. Many cities have begun to mandate
benchmarking of energy use for certain buildings.
NYC specifically, requires buildings with floor area of
at least 500 00 (47% of all buildings) to report on
energy use across several categories (e.g., hot water,
cooling, heating), which may lead to better under-
standing of air conditioning adoption and trends
(Local Law 84 of 2009). Recent work has addressed the
latter limitation by introducing a cooled fraction para-
meter into BEM which can be assigned on a per grid
point basis (Xu et al 2018). Moreover, this study only

Figure 5.Hex bin plot of percent increase per grid point ACdemand as a function of near surface temperature (a), (b) and heat index
(c), (d) anomalies for RCP4.5 andRCP8.5. Colormap represents count number per hexagonal bin. Binswith counts<100 have been
omitted.

7

Environ. Res. Lett. 13 (2018) 094008



considers impacts of climate on NYC’s current build-
ing stock. Potential urban expansion and re-develop-
ment within the city may strengthen urban-
atmosphere feedbacks (Georgescu et al 2012), while
adaptation-focused policies (e.g., cool roofs/areas, AC
efficiency measures) can potentially reduce them. For
example, programs like the US Department of Energy
Energy Star, incentivize building and equipment
energy efficiency and may help offset some of the cli-
mate impacts on cooling loads. However, studies have
shown that warmer conditions in urban neighbor-
hoods may decrease air conditioning COP by over
15% (Gracik et al 2015), which might be exacerbated
under increasingly warm summers. Finally, future
work may expand simulations via use of an ensemble
of GCM runs, which would allow for an estimation of
uncertainty in projections of climate impacts.
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